Geometric optics and instability for NLS and Davey–Stewartson models
نویسندگان
چکیده
منابع مشابه
Geometric optics and instability for NLS and Davey-Stewartson models
We study the interaction of (slowly modulated) high frequency waves for multi-dimensional nonlinear Schrödinger equations with gauge invariant power-law nonlinearities and non-local perturbations. The model includes the Davey–Stewartson system in its elliptic-elliptic and hyperbolic-elliptic variant. Our analysis reveals a new localization phenomenon for non-local perturbations in the high freq...
متن کاملGeometric Optics and Instability for Semi-classical Schrödinger Equations
We prove some instability phenomena for semi-classical (linear or) nonlinear Schrödinger equations. For some perturbations of the data, we show that for very small times, we can neglect the Laplacian, and the mechanism is the same as for the corresponding ordinary differential equation. Our approach allows smaller perturbations of the data, where the instability occurs for times such that the p...
متن کاملassessing political stability and instability in central asia and caucasus; case study, azerbaijan and kyrgyzstan
منطقه ی آسیای مرکزی وقفقاز به عنوان منطقه ای تاریخی و به دلیل دارا بودن ذخایر عظیم هیدرو کربنی از اهمیت ویژه ای برخوردار است. کشورهای این منطقه از عوامل عمده ی بی ثباتی نظیر عوامل جغرافیایی، اقتصادی، امنیتی، اجتماعی و سیاسی رنج می برند. پس از فروپاشی اتحاد جماهیر شوروی کشورهای منطقه از نعمت استقلال ناخواسته ای برخوردار شدند که مشکلات فوق را برای آن ها چندین برابر می کرد. در این روند برخی از این...
15 صفحه اولGeometric Structure of Nls Evolution
We compare the Hamiltonian and Lagrangian approaches to nonlinear evolution equations presenting the nonlinear Schrödinger equation on the line as a simple concrete example. In particular we explain the least action principle and the Noether theorem in this context. The specific point of view, adapted from Souriau’s book [10], has not been applied to nonlinear evolution equations and it offers ...
متن کاملInstitute for Mathematical Physics Semilinear Geometric Optics for Generalized Solutions Semilinear Geometric Optics for Generalized Solutions
This paper is devoted to the study of nonlinear geometric optics in Colombeau algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic systems in one space variable. Extending classical results, we establish a generalized variant of nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained when distributional initial data ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Mathematical Society
سال: 2012
ISSN: 1435-9855
DOI: 10.4171/jems/350